Y AFFES Direct Interface (YDI)

(C) 2005-2010, Aleph One Ltd.

Table of Contents

55 SyStemM REQUITEIMENLS.cccuiiieiiieeiiieeiieeeiteeeiee et ee et ee ettt e et e e et e e sbeeesabeeessseeessseesnssaeeeesansnnssneeens
6 6 How to integrate YAFFS with an RTOS/Embedded SyStem...........cccccveeriiieniiieeeniiiieee e
0.1 SOUICE FALES....eieiiiieiiieeieeeeee ettt e et e et e e st e e s atee e steeesbeeesaeeensseeanssaesssneennes
6.2 POSIX Application INtEIrface.........covcuiiiiiieiiie ettt ettt e e saeeeae e e e e eaae e e ennnens
6.3 RTOS Integration INTETTACE.........c.eeeeeuiiieiiieciieeciie ettt e e e e e e e e e ennes
77 YAFFS NAND MOUEL.....cc.uiiiiiieieiieitee ettt sttt sttt e bt et e s e saeenseennee s
7.1 NAND Model considerations for YAFEST..........oooiiiiiiiiieieeee ettt
7.2 NAND Model fOr YAFEFS2.....ouiiiieeeee ettt et e e 10
8 8 NAND Configuration and Access INterface..........coovveveeiieeriiiiiiiiieeeiee et 11
8.1 Common configuration items (YAFFS1 and YAFFS2).....ccocviiiiiiiiiieeeeeeeeeeeee e 12
8.2 Common Access Functions (YAFFEST and YAFFS2).....ooooiiiiiiie e 13
8.3 YAFFST ACCESS FUNCHONS. ...ccuviiiiiieiiiieciieeeiie ettt e stee et eeeaeeeneaeeessaeeeeeeens 13
8.4 YAFFS2 AcCCESS FUNCHONS. ...ccuiiiiiiieiiiieeiiee ettt ettt e et eeseaeeeebeeessaeeeeeeens 14

1 Purpose

The purpose of this document is to describe the interfacing of the YAFFS Direct Interface (YDI) as
well as to provide sufficient information to allow a preliminary evaluation of YAFFS. This
document tries to focus on the issues important to the system integrator without getting too detailed
about how YAFFS works.

2 What are YAFFS and YAFFS Direct Interface?

Y AFFES stands for Yet Another Flash File System. Y AFFS is the first file system that has been
designed, from the ground up, for NAND storage.

In 2002 Aleph One set out to identify file system options for using NAND Flash as a file system.
Various file systems available at the time were evaluated and all were found lacking in one way or
another. The need for a suitable NAND storage file system was identified and YAFFS was designed
to fill that need'.

Although YAFFS was originally designed for NAND flash, it has been used successfully with NOR
flash systems and even as a RAM file system. This allows high reliability file systems to be
constructed using NOR flash, with a future migration path to NAND flash for higher density and
performance.

Y AFFS was originally designed for use with the Linux operating system, but was designed in a
very modular way. The operating-system-specific code was kept separate from the main YAFFS
file system code. This allows YAFFS to be ported quite cleanly to other operating systems through
operating system personality modules. One such personality module is the YAFFS Direct Interface
(YDI) which allows YAFEFS to be simply integrated with embedded systems, with or without an
RTOS.

Y AFFS has been used for many products using various operating systems including Windows CE
and various RTOSs, including ThreadX, vXworks, pSOS to name just a few.

Note that there is a native port to eCOS that does not use YDI.

YAFFS2, a more recent release of YAFFS, supports a wider range of NAND flash components
including 2k page devices, and produces equivalent or better performance. It include YAFFS1
compatibility code so YAFFS1 images still work and migration is quite simple.

Y AFFES was originally released for Linux under the GNU Public License (GPL). Various embedded
developers soon identified that YAFFS would be ideal for their applications, but were not able to
use GPL based code in their systems. Aleph One has alternative licensing arrangements to support
such applications. The YDI code was written to provide a compatibility layer between the core
yaffs code and the application.

As well as providing a NAND file system, YDI also provides a RAM emulation layer to allow
YAFEFS to operate as a RAM file system too. While the RAM emulation is perhaps not as efficient

1 Various comparison and and analysis documents are available at http://www.alephl.co.uk/yaffs

2

as a dedicated RAM file system, this does allow one well proven file system to use both RAM and
flash.

3 Why use YAFFS?

Y AFFES is the first, and perhaps only, file system designed specifically for NAND flash. This means
that YAFFS has been designed to work around the various limitations and quirks of NAND flash, as
well as exploit the various features of NAND to achieve an effective file system.

Some features to consider:

Y AFFS has been well proven and has been used to ship in large volumes in several products
using many different operating systems, compilers and processors.

YAFEFS is written in portable C and is endian neutral.

Y AFFES provides bad block handling and ECC algorithms to handle deficiencies in NAND flash.

YAFFS is a log-structured file system which makes it very robust to corruptions caused by
power failures etc.

YAFFS has highly optimised and predictable garbage collection strategies. This makes it high
performance and very deterministic when compared with similar file systems.

YAFFS has a lower memory footprint than most other log-structured flash file systems.

YAFFS provides a wide range of POSIX-style file system support including directories,
symbolic and hard links etc. through standard file system interface calls.

YAFFS is highly configurable to work with various flash geometries, various ECC options,
caching options etc.

Y AFFS Direct Interface is simple to integrate in a system — only a few interface functions are
required.

4 Source Code and YAFFS Resources

Please note the licensing terms that apply to using the YAFFS code.

This document refers to the YAFFS source code extensively. There are two CVS code base
repositories: yaffs and yaffs2. The yaffs repository is largely depreciated and use of the yaffs2
repository is suggested. You can find the code on Aleph One's website using the web-based CVS
interface here:

http://www.alephl.co.uk/cgi-bin/viewcvs.cqgi/
Or the full CVS interface described here:
http://www.alephl.co.uk/cvsuse.html

All general YAFFS information (including licensing information) is available here:

http://www.alephl.co.uk/yaffs/

http://www.aleph1.co.uk/cgi-bin/viewcvs.cgi/
http://www.aleph1.co.uk/yaffs/
http://www.aleph1.co.uk/yaffs/
http://www.aleph1.co.uk/yaffs/
http://www.aleph1.co.uk/cvsuse.html

5 System Requirements

Determining minimum system requirements is often quite difficult. The following are presented as
a guideline only. Contact Aleph One for more detailed analysis if required.

YAFFES is endian-neutral and works fine with little-endian and big-endian processors.

YAFFES code has been used successfully with many different 32-bit and 64-bit CPUs including
MIPS, 68000, ARM, ColdFire, PowerPC and x86 variants. YAFFS should work with 16-bit
CPUs too, but this is generally untested and might need some tuning.

Because YAFFS is log structured, RAM is required to build up runtime data structures for
acceptable performance. As a rule of thumb, budget approximately 2 bytes per chunk’ of NAND
flash, where a chunk is typically one page of NAND. For NAND with 512byte pages, budget
approximately 4kbytes of RAM per 1Mbyte of NAND. For 2kbyte page devices budget
approximately 1kbyte per 1Mbyte of NAND.

6 How to integrate YAFFS with an RTOS/Embedded system

Y AFES Direct Interface (YDI) wraps YAFFES in a way that is simple to integrate. You need to
provide a few functions for YAFFS to use to talk to your hardware and OS. YAFFS provides a set
of POSIX-compliant functions for applications to use to talk to it.

In addition to the YAFFS core file system, the YDI has three parts:

POSIX Application Interface: This is the interface that the application code uses to access the
YAFFS file system. (open, close, read, write, etc)

RTOS Integration Interface: These are the functions that much be provided for YAFFS to
access the RTOS system resources. (initialise, lock, unlock, get time, set error)

Flash Configuration and Access Interface: These are the functions that must be provided for
YAFEFES to access the NAND flash. (initialise, read chunk, write chunk, erase block, etc).

2 More YAFFS terms are defined in the section entitled YAFFS NAND Model

4

Application

POSIX Interface

YAFFS Direct Interface

YAFFS Core

Filesystem

RTOS |Interface Flash Interface

RTOS Flash

6.1 Source Files

The following source files contain the core file system

yaffs_checkpointrw.c Streamer for writing checkpoint data
yaffs_ecc.c ECC code

yaffs_guts.c The major yaffs algorithms.

yaffs_nand.c Flash interfacing abstraction.
yaffs_packedtagsl.c Tags packing code

yaffs_packedtags2.c

yaffs_qgsort.c gsort used during yaffs2 scanning
yaffs_tagscompat.c Tags compatibility code to support yaffs1 mode.
yaffs_tagsvalidity.c Tags validity checking.

The yaffs direct interface is in yaffsfs.c.

Example and testing build files:

dtest.c A test harness

yaffscfg2k.c A test configuration.

yaffs_fileem.c Nand flash simulation using a file as backing store.
yaffs_fileem2k.c

yaffs_norifl.c Nor flash simulation and interfacing example.
yaffs_ramdisk.c Simulations using RAM.

yaffs_ramem?2k.c

ynorsim.c Another Nor simulation.

6.2 POSIX Application Interface
The application interface is defined in yaffsfs.h®. These provide a POSIX file system interface.

For the most part, this interface consists of the standard clib function names prefixed with yaffs_.
For example, yaffs_open (), yaffs_close() etc.

There is a lot of flexibility in how these functions are used and the system integrator needs to
determine the best strategy for the system.

These functions can be used directly, with the code written using these names. For example

int main(...)

{
// initialisation
f = yaffs_open(...);
yvaffs_read(f,...);
yvaffs_close (f);

The yaffs functions can also be wrapped in some way to allow existing code to use yaffs without
modification. For example:

3 See the section on Source Code and YAFFS Resources to find the files referred to in this document.

6

#define open(path, oflag, mode) vyaffs_open(path, oflag, mode)

int main(...)

{
// initialisation
f = open(...);
read(f, ...);
close (f);

A more complex approach that can be used if more than one file-system is used is to provide
redirection functions. For example:

int open(const char *path,...)
{
// Determine which file system is being used
if(it_is_a_yaffs_path(path))
return yaffs_open(...);
else
{
// Do something else

}

Some RTOS's provide a flexible way to integrate file systems in which case YDI can typically use
these interfaces to access yaffs file systems.

6.3 RTOS Integration Interface

Before YAFFS can be used, it needs to be integrated with the system and configured so that the
correct actions are performed.

To do this, you need to modify the configuration file. An example configuration file is presented in
yaffscfg.c and yaffscfg2k.c.

This is a relatively straight forward process and defines the RTOS access functions.
The RTOS access functions are:
+ void yaffsfs_SetError (int err): Called by YAFFS to set the system error.

« void yaffsfs_Lock (void): Called by YAFFS to lock YAFFS from multi-threaded
access.

+ void yaffsfs_Unlock (void): Called by YAFFS to unlock YAFFS.
« _ u32 yaffsfs_CurrentTime (void): Get current time from RTOS.

« void yaffsfs_LocallInitialisation (void): Called to initialise RTOS context.

If YAFFS is being used in a multi-threaded environment, then typically
yvaffs_LocalInitialisation () will initialise a suitable RTOS semaphore and
yvaffs_Lock () and yaffs_Unlock () will call the appropriate functions to lock and release
the semaphore.

yaffs_CurrentTime () can be any time increment of use to the system. If this is not required,
then it is fine to just use a function that is hard-wired to return zero.

Although not shown here, YAFFS also requires memory allocation/free functions which default to
malloc () and free (). These, and some other functions can be tuned in file ydirectenv.h

Before the application code uses YAFFS, the yaffs_StartUp () function must be called and the
appropriate partitions must be mounted. This is typically done in the system boot code:

// System boot code: Start up YAFFS.
yaffs StartUp();
yaffs_mount (" /boot");

7 YAFFS NAND Model

Before defining the flash integration interface,it is important to understand the model and
corresponding nomenclature used throughout YAFFS and its documentation.

YAFEFS uses a fairly abstract model for NAND flash. This allows a lot of flexibility in the way it
can be used.

YAFFES is designed for NAND flash and makes the following assumptions and definitions:

The flash is arranged in blocks. Each block is the same size and comprises an integer number of
chunks. Each block is treated as a single erasable item. A block contains a number of chunks.

A chunk equates to the allocation units of flash. For YAFFS1, each chunk equates to a 512-byte
or larger NAND page (that is, a 512-byte or larger data portion and a 16-byte spare area). For
YAFFS2, a chunk will typically be larger (eg. on 2k page devices, a chunk will typically be a
single 2k page: 2kbytes of data and 64 bytes of spare). YAFFS2 is capable of working with
smaller chunk sizes by using inband tags.

All accesses (reads and writes) are page (chunk) aligned. Some reads might only read the spare
area where the tags are kept.

When programming a NAND flash, only the zero bits in the pattern being programmed are
relevant, and one bits are "don't care". For example, if a byte already contains the binary pattern
1010, then programming 1001 will result in the pattern which is the logical AND of these two
patterns ie. 1000. This is different to NOR flash which would typically abort the attempt to
converta O into a 1.

Y AFEFS identifies blocks by their block number and chunks by the chunk Id. A chunk Id is
calculated as:

chunkId = block_id * chunks_per_block + chunk_offset_in_block.

YAFES treats a blank (OxFF filled) block as being free or erased. Thus, the equivalent of formatting
for a YAFFS partition is to erase all the blocks that are not bad.

YAFFS2 has a generalised tags interface to provide better flexibility to cater for a wider range of
devices with larger pages and stricter programming limitations. YAFFS2 thus handles more abstract
constructs than YAFFS1 and more effort is required to interface to the NAND.

7.1 NAND Model considerations for YAFFS1

The historical YAFFS1 tags structure was layed out in accordance with the SmartMedia
specification for use with 512-byte pages. There is now much more flexibility in the way things can
be configured.

YAFFS|1 is capable of being used with a variety of memory layouts so long as the flash supports the

ability to overwrite the tags area to set the deletion marker to zero.

If the yaffs_Device's useNANDECC filed is not set, then yaffs will perform the ECC calculations.
If this iset then yaffs will expect the NAND driver todo any required ECC checks. On devices that
are not using ECC, for example NOR, set useNANDECC=1 and then don't do any ECC anyway.

The YAFFSI1 flash model expects an area of 16 spare bytes, some of which are used for tags. The
mapping between the spare bytes and the usage of the bytes is specified in yaffs_packedtagsl.c

The YAFFS1 model has been used in many NOR-based systems. One particularly instructive
example is in yaffs_norif1l.c which implements YAFFS1 mode on Intel M18 flash using 1k data
pages and simulating a spare area on re-writable areas of flash. This does not use ECC but uses
checksumming instead.

7.2 NAND Model for YAFFS2

YAFFS?2 uses a different tags layout than YAFFS1. YAFFS2 uses a yaffs_ExtendedTags
structure.which is packed according to the code in yaffs_packedtags2.c.

The NAND handler layer must use or populate the fields. The fields have the following meaning:

validMarker(O Setto OXAAAAAAAA
chunkUsed If O then this chunk is not in use

objectId The object this chunk belongs to. If O then this is not part of an object (ie.
unused).

chunkId If O then this is a header, else a data chunk at the specified position in the file
byteCount Number of data bytes in the chunk. Only valid for data chunks

The following fields only have meaning when we read

eccResult Result of ECC check when reading
blockBad If O then the block is not bad.

The following fields have meaning for YAFFS1 and should be zero for YAFFS:
chunkDeleted if non-zero, the chunk is marked deleted.

serialNumber 2-bit serial number.

The following field has meaning for YAFFS1 and should be zero for YAFFS2:

sequenceNumber The sequence number of this block

10

Optional extra info if this is an object header (Y AFFS2 only). Make zero for YAFFS].
If extraHeaderInfoAvailable is set, then all the ext raXXX fields must be valid.

extraHeaderInfoAvailable There is extra info available if this is not zero.
extraParentObjectId The parent object id.

extralsShrinkHeader Isita shrink header?

extraShadows Does this shadow another object?
extraObjectType What object type?
extraFileLength Length if it is a file.

extraEquivalentObjectId Equivalent object Id if it is a hard link.
And finally:
validMarkerl Must be 0x55555555.

There are quite a few fields, some of which are optional. All the extraXXXX fields are a way of
stuffing more data into object header tags in a way that speeds up scanning. These are optional and
should all be zero if not supported.

The easiest way to process the yaffs_ExtendedTags is to use the functions presented in
yaffs_packedtags2.h to do the packing and unpacking. These are:

void yaffs_PackTags2(yaffs_PackedTags2 * pt, const yaffs_ExtendedTags * t);
void yaffs_UnpackTags2(yaffs_ExtendedTags * t, yaffs_PackedTags2 * pt);

These functions create or use a packed tags structure which can be stored in the NAND spare area.
An example of how to do this is presented in yaffs_fileem2.c

8 NAND Configuration and Access Interface

For an example of how to do the configuration, refer to yaffs_cfg.c and yaffs_cfg2k.c.
This part of the configuration involves configuring the chips and suitable access functions.
This is done in yaffs_StartUp ()

Before launching into the device configuration, it is important to understand that YAFFS supports
two different modes of operation:

YAFFS1: This is the original mode of operation and is only available for 512-byte-per-page
devices.

11

« YAFFS2: This mode of operation supports larger page sizes.
Most configuration options are the same for both, but they have different NAND access functions.

You may have a system that uses a mix of YAFFS1 and YAFFS2 partitions.

8.1 Common configuration items (YAFFS1 and YAFFS2)

The configuration involves two parts:
« Setting up the mount point table.
« Setting up the devices.

A yaffsfs_DeviceConfiguration is an entry that has two parts: a mount point name and a pointer to a
vaffs_Device structure. The mount point name is used to determine where the particular
vaffs_Device may be found in the directory structure. There can be any number of mount points and
they may be nested.

static yaffsfs DeviceConfiguration yaffsfs config[] = {
{ "/", &ramDev},
{ "/flash/boot", &bootDev},
{ "/flash/flash", &flashDev},
{ "/ram2k", &ram2kDev},
{(void *)0,(void *)0} /* Terminate list */

}i

Each logical storage entity is called a yaffs_Device and is probably best though of as a partition
descriptor. Each yaffs_Device can correspond to:

- A whole flash device.
- Part of a flash device.

« Something other than a flash device (e.g. perhaps a RAM emulation). During testing, this
emulation capability is often employed to use a host system hard-disk file or nfs-mounted file as
an alternative storage mechanism.

Two or more yaffs_Devices can reside in a single physical flash device by specifying different start
and end blocks. For example here is a case where a single device is split into two partitions:

// /boot

bootDev.startBlock = 0; // First block.
bootDev.endBlock = 127; // Last block in 2MB.

// /disk

diskDev.startBlock = 128; // First block after 2MB
diskDev.endBlock = 1023; // Last block in 16MB

All yaffs_Device structures must be configured with the following fields:

12

totalBytesPerChunk: Number of bytes per chunk. This must be 512 bytes for YAFFSI1. If you
are using inband tags then this number includes the data + inband tags. If not this only includes
the data area.

nChunksPerBlock: Number of chunks per erasable block.

nReservedBlocks: Number of erasable blocks that YAFFS must keep in reserve for garbage
collection and to cover for block failures. This must be a minimum of 2, but 5 or so is better. If
you are using a media that is not expected to fail (eg. RAM for a RAM disk, or a host file system
emulation then 2 is OK).

startBlock: Start block for this yaffs_Device.
endBlock: Last block in this yaffs_Device.

useNANDECC: If this is non-zero, then YAFFS will not perform ECC and it is assumed that the
hardware ECC or specified NAND access functions (or underlying drivers) will perform ECC
checks. This only applies to YAFFS1 format.

nShortOpCaches: This configures the number of entries in the YAFFS cache for this
vaffs_Device. A value of zero turns off the cache. A value of 10 to 20 is recommended for most
systems.

isYaffs2: Set according to the type of yaffs_Device: 0 for YAFFS1,1 for a YAFFS2.

genericbevice: This is an arbitrary value used to identify the device context. It is important
that each yaffs_Device has a different value for the yaffs_fstat() POSIX function to work
correctly. Typically using (void *) n, is sufficient, but this can also be a pointer or some other
value as appropriate to establish a system context.

8.2 Common Access Functions (YAFFS1 and YAFFS2)
Both YAFFS1 and YAFFS?2 partitions must provide pointers to the following functions:

int (*eraseBlockInNAND)(struct yaffs_DeviceStruct *dev,int blockiInNAND)
Y AFEFS calls this function to erase a block of flash.

int (*initialiseNAND)(struct yaffs_DeviceStruct *dev)

YAFEFS calls this function at start up before other functions get called to access the yaffs_Device.
This allows the system integrator a control point to perform any required initialisation (eg. set up
chip selects etc.).

8.3 YAFFS1 Access Functions

For YAFFSI partitions, the yaffs_Device configuration also specifies pointers to two further
functions that YAFFS calls to access the NAND for this yaffs_Device. For a better understanding
of these functions, see the section on the YAFFS NAND Model. These functions are:

int (*writeChunkToONAND)(struct yaffs_DeviceStruct *dev,int chunkInNAND, const __u8 *data,
yaffs_Spare *spare)

13

Y AFES calls this function to write data to NAND. The data pointer may be NULL if only the spare
area is being written, as happens when the chunk is being deleted or retired. If the data pointer is
NULL then do not write the data. The spare pointer will never be NULL.

int (*readChunkFromNAND)(struct yaffs_DeviceStruct *dev,int chunkInNAND, __u8 *data,
yaffs_Spare *spare)

Y AFEFS calls this function when reading a chunk from flash. The meanings of the arguments are
obvious from the above, but note that the data and spare fields might be NULL, in which case those
pointers should not be dereferenced.

8.4 YAFFS2 Access Functions

The YAFFS2 mode of operation is far more flexible than the YAFFS1 mode of operation. That
allows for far more different types of flash to be used, but slightly increases the complexity of the
NAND access functions.

With the YAFFS1 mode of operation, YAFFS performs bad block detection and marking and can
optionally perform ECC. It can do this because it assumes that the NAND spare area is structured in
a certain way. The YAFFS2 mode of operation can no longer make those assumptions which means
that the system integrator must provide slightly more complex functions. However, the interface is
still relatively simple, particularly if existing code is used as a basis.

int (*writeChunkWithTagsToNAND) (struct yaffs_DeviceStruct * dev,
int chunkInNAND, const __u8 * data,
const yaffs_ExtendedTags * tags)
int (*readChunkWithTagsFromNAND) (struct yaffs_DeviceStruct * dev,
int chunkInNAND, _ u8 * data,
yaffs_ExtendedTags * tags)
int (*markNANDBIlockBad) (struct yaffs_DeviceStruct * dev, int blockNo);
int (*queryNANDBIock) (struct yaffs_DeviceStruct * dev, int blockNo,
yaffs_BlockState * state, int *sequenceNumber)

The writeChunkWithTagsToNAND () and readChunkWithTagsFromNAND () functions must save or
retrieve the data and extended tags. Please refer to the explanation of the YAFFS2 NAND model
for a better understanding of how to handle the tags. Please note that under certain circumstances,
the data and tags pointers may be NULL and the driver code should ignore transfers from or to
pointers that are NULL.

The NAND access functions must also provide a mechanism for marking and tracking bad blocks.
If a bad block is detected and YAFFS decides to mark that block bad, the markNANDBlockBad ()
function is called.

The queryNANDBIock () function does two things:

14

- It determines the block state

- If the block is in use it also retrieves the block’s sequence number.

By far the easiest way to understand this all is to refer to the example code provided.

15

	1 Purpose
	2 What are YAFFS and YAFFS Direct Interface?
	3 Why use YAFFS?
	4 Source Code and YAFFS Resources
	5 System Requirements
	6 How to integrate YAFFS with an RTOS/Embedded system
	6.1 Source Files
	6.2 POSIX Application Interface
	6.3 RTOS Integration Interface

	7 YAFFS NAND Model
	7.1 NAND Model considerations for YAFFS1
	7.2 NAND Model for YAFFS2

	8 NAND Configuration and Access Interface
	8.1 Common configuration items (YAFFS1 and YAFFS2)
	8.2 Common Access Functions (YAFFS1 and YAFFS2)
	8.3 YAFFS1 Access Functions
	8.4 YAFFS2 Access Functions

